## Metrics Committee – Soil Carbon Update



# Soil Carbon Metric

- Indicates whether a field is gaining or losing carbon
- Based on NRCS Soil Conditioning Index (SCI)
- Accounts for three major factors influencing soil carbon:
  - Organic matter and crop residue
  - Wind and water erosion
  - Tillage

Field to Market | In Focus | Sustainability Metrics 101





## Soil Carbon Score Description

The SCI returns a value between -1 and 1 for each field. A positive value indicates increasing soil carbon, a neutral value (between -0.05 and 0.05) indicates maintaining soil carbon, and a negative value indicates losses of soil carbon. The magnitude of the index reflects confidence in the directionality and does not indicate a higher or lower quantity of carbon in the soil.



Field to Market | In Focus | Sustainability Metrics 101

- Use Walton Family Foundation funds to further options on soil carbon for users of the Fieldprint Platform
  - Timeline for decision was too short to allow for a formal metric revision discussion/ documentation/ review/ approval.
- The Committee discussed adding an existing 3<sup>rd</sup> party tool –
  COMET-Planner as an optional, educational feature
  - This will enhance our capabilities on soil C within 12 months
  - While also providing a new option for revising the Soil Carbon Metric

### What approaches are carbon markets using?

- Climate Action Reserve Soil Enrichment Protocol requires soil carbon changes to be directly measured or modeled
  - Modeled on ESMC draft protocol and being used by IndigoAg
- **Nori** Using COMET-Farm and records verification
- What is the best approach to enable "laddering in" from a sustainability assessment to a market opportunity?
  - By using a simplified version of a complex model we can offer users some assurance that their estimated soil carbon from the Fieldprint Platform will be consistent if they choose to enroll in a market opportunity
  - Opportunity to directly connect to market opportunities through data transfer (input data and initial soil C estimate).

## How does COMET-Planner relate to other models?

• Model Hierarchy: Simple models appropriate for decision support are often built from more complex models used in research

| Simple | Meta-model to capture complexity of detailed<br>models without requiring modeling experts to<br>interpret (suitable for general public) | COMET-Planner                  | N/A                         | N/A                                   |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------------|--|--|
|        | Interface for a detailed model to make it user<br>friendly<br>(suitable for experienced users; require<br>detailed data)                | COMET-Farm                     | N/A                         | NTT<br>(Nutrient<br>Tracking<br>Tool) |  |  |
| Comple | Detailed complex research model<br>(suitable for experts)                                                                               | DayCENT<br>(Carbon and<br>GHG) | DNDC<br>(GHG and<br>carbon) | APEX<br>(water<br>quality)            |  |  |

## **Alternatives to using models – Emissions Factors**

- Other tools for carbon accounting use "emissions factors"
  - Derived from field research and documented in scientific literature
  - "Based on available field studies, results show corn grown in region 'X' with no tillage and cover crops can sequester on average 'Y' C per acre per year"
- The emissions factor is then extrapolated to all corn in that region with those practices
  - Simple, easy to use and can be applied across many regions even when observations are difficult or scarce
  - Can only account for limited specific features of a field

## **Examples of Emissions Factor Approaches**

- **IPCC** "Tiers"
  - 1: National scale emissions factors
  - 2: Region and practice specific emissions factor
- FAST GHG tool developed by Cornell for Project Gigaton value chain reporting

## Cool Farm Tool

- "Soil carbon sequestration" based the results of published studies built from over 100 global datasets"
- Data entries capture tillage and cover crop practice changes
- Assume emissions factors are applied based on crop, region, and change in tillage and cover crop

|                                | Options to<br>select from                                                                                                                                                      | Comment/ definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Change<br>Select 1 option from<br>list on the left | Years | % of<br>area with<br>practice<br>change |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|-----------------------------------------|
|                                | Frequency of tillage using tillage?), in y                                                                                                                                     | e / replanting (how often is the field replanted<br>ears                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |       |                                         |
| Tillage<br>practice<br>applied | No change<br>Conventional to<br>Reduced<br>Conventional to No-<br>till<br>Reduced to<br>Conventional<br>Reduced to No-till<br>No-till to<br>Conventional<br>No-till to Reduced | Conventional: Substantial soil disturbance, such as ploughing, and/or frequent tillage operations; little surface coverage with residues at planting time (< 30%);<br>Reduced-till: Primary and/or secondary tillage with reduced soil disturbance (shallow and without full inversion); normally leaving >30% surface coverage at planting;<br>No-till: Direct planting without primary tillage, a litter layer is maintained on the surface, minimal soil disturbance in the planting zone; weed control via herbicides. |                                                    |       |                                         |
| Cover<br>cropping              | No change<br>Started adding<br>Stopped adding                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |       |                                         |

From CFT data entry guide: Data-Input-Guide.pdf (wpengine.com)

## **COMET-Planner Background**

- Developed by NRCS and Colorado State University as a meta-model that approximates results of the COMET-Farm tool for individual fields
- Provides estimates of sequestration over a 10-year period following the practice change.
- Established and ready-to-use for farmer decision support
- USDA commitment to ongoing development and support of COMET Farm and Planner to keep up-to-date with scientific advances
- Provides consistency with other FTM metrics (GHG Emissions N2O calculation)
- Clear path to more complex tools proposed for use in carbon markets
- Could be applied either/both to evaluate current practice impacts or as a "what-if" scenario tool.

Emission Reduction Coefficients (ERC) (tonnes CO<sub>2</sub> equivalent per unit per year)

| NRCS Conservation<br>Practices                                                                                                        | Soil<br>Carbon | Biomass<br>Carbon | Fossil<br>CO <sub>2</sub> | Biomass<br>Burning CO <sub>2</sub> | Biomass<br>Burning N <sub>2</sub> O | Biomass<br>Burning CH <sub>4</sub> | Liming | Direct<br>Soil N <sub>2</sub> O | Indirect Soil<br>N <sub>2</sub> O | Soil<br>CH₄ | Total Emission<br>Reductions | Minimum Total<br>Emission<br>Reductions* | Maximum Total<br>Emission<br>Reductions* |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|---------------------------|------------------------------------|-------------------------------------|------------------------------------|--------|---------------------------------|-----------------------------------|-------------|------------------------------|------------------------------------------|------------------------------------------|
| Residue and Tillage<br>Management - No-Till<br>(CPS 329) - Reduced<br>Till to No Till or Strip<br>Till on Non-Irrigated<br>Cropland   | 0.56           | 0.00              | 0.00                      | 0.00                               | 0.00                                | 0.00                               | 0.00   | ) 0.04                          | 4 0.01                            | 0.00        | 0.61                         | 0.31                                     | 0.83                                     |
| Cover Crop (CPS 340)<br>- Add Non-Legume<br>Seasonal Cover Crop<br>(with 25% Fertilizer N<br>Reduction) to Non-<br>Irrigated Cropland | 0.46           | 0.00              | 0.00                      | 0.00                               | 0.00                                | 0.00                               | 0.00   | ) -0.01                         | 1 0.02                            | 0.00        | 0.47                         | -0.07                                    | 0.70                                     |

\*Minimum and maximum emission reductions represent the minimum and maximum total emissions over a range of soil, climate and management conditions within multi-county regions.

Min/Max emissions are not estimated for all practices, due to limitations in quantification methods

\*\*Values were not estimated due to limited data on reductions of greenhouse gas emissions from this practice

# These practice changes combined result in a total of 2.75 tons C per acre over 10 years (= 0.28 tons C per acre per year)

#### **Options under discussion**

### **1.** Recent or current year practice change:

A user indicates if any relevant tillage, cover crop or nutrient management change in the past 10 years. They are provided with a measure of the annual per acre change in Soil Carbon related to those practice changes and the time period that applies

If they changed from reduced to continuous no-till in 2015, then they are currently sequestering X tons/acre/year for the period 2015-2025

## 2. Considering a future practice change:

A user could duplicate their field and label it a scenario, then indicate any changes in practices they are considering. The Platform would re-run and show all metric scores associated with that change, as well as the estimated Soil Carbon increase.

If a change from reduced to continuous no-till is planned for 2021, they could expect to achieve sequestration of X tons/acre/year from 2021-2031

| -                            |      |                  |      |      |         |                |      |         |                 |      |       |      |      |      |      |      |
|------------------------------|------|------------------|------|------|---------|----------------|------|---------|-----------------|------|-------|------|------|------|------|------|
| Year                         | 2015 | 2016             | 2017 | 2018 | 3 2019  | 2020           | 2021 | 2022    | 2023            | 2024 | 2025  | 2026 | 2027 | 2028 | 2029 | 2030 |
| _                            |      | adopt<br>reduced |      |      |         |                |      | plannin | <i>п</i> д а со | ver  |       |      |      |      |      |      |
| Practice adoption            |      | tillage          |      |      | adopt r | <b>റo-till</b> | <br> | crop    |                 |      |       |      |      |      |      |      |
| CT to RT Soil C              |      | 0.22             | 0.22 | 0.22 |         |                |      |         |                 |      |       |      |      |      |      |      |
| RT to NT soil C              |      |                  |      | ļ    | 0.56    | 0.56           | 0.56 | 0.56    | 0.56            | 0.56 | 0.56  | 0.56 | 0.56 | 0.56 |      |      |
| cover crop soil C            |      |                  |      | I    | 1       |                | l    | 0.46    | 0.46            | 0.46 | 0.46  | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
| Carbon seq<br>(tCO2eq/ac/yr) | 0    | 0.22             | 0.22 | 0.22 | 0.56    | 0.56           | 0.56 | 5 1.02  | 1.02            | 1.02 | 1.02  | 1.02 | 1.02 | 1.02 | 0.46 | 0.46 |
|                              |      |                  |      |      |         |                |      |         |                 |      | Proje | cted |      |      |      |      |



| -                 |      | т       |      |      |         |         |      |         |         |      |       |      |      |      |      |      |
|-------------------|------|---------|------|------|---------|---------|------|---------|---------|------|-------|------|------|------|------|------|
| Year              | 2015 | 2016    | 2017 | 2018 | 2019    | 2020    | 2021 | 2022    | 2023    | 2024 | 2025  | 2026 | 2027 | 2028 | 2029 | 2030 |
|                   |      | adopt   |      |      |         |         |      |         |         |      |       |      |      |      |      |      |
|                   |      | reduced |      |      |         |         |      | plannin | ng a co | ver  |       |      |      |      |      |      |
| Practice adoption |      | tillage |      |      | adopt r | no-till |      | crop    |         |      |       |      |      |      |      |      |
| CT to RT Soil C   |      | 0.22    | 0.22 | 0.22 |         |         |      |         |         |      |       |      |      |      |      |      |
| RT to NT soil C   |      |         |      |      | 0.56    | 0.56    | 0.56 | 0.56    | 0.56    | 0.56 | 0.56  | 0.56 | 0.56 | 0.56 |      |      |
| cover crop soil C |      |         |      |      | ·       |         |      | 0.46    | 0.46    | 0.46 | 0.46  | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
| Carbon seq        |      |         |      |      |         |         |      |         |         |      |       |      |      |      |      |      |
| (tCO2eq/ac/yr)    | 0    | 0.22    | 0.22 | 0.22 | 0.56    | 0.56    | 0.56 | 1.02    | 1.02    | 1.02 | 1.02  | 1.02 | 1.02 | 1.02 | 0.46 | 0.46 |
| _                 |      |         |      |      |         |         |      |         |         |      | Proje | cted |      |      |      |      |

- 1. Requires a **change in practice** to produce a result
  - Requires more than one year of information
  - In this example, what would the metric score be in 2015?
- 2. Options **only include adoption of conservation** practices for example, stopping a cover crop, or going from no till to reduced till are not available practice change options
  - Would not capture the full suite of operational changes farmers may make
  - Could be overly optimistic if only score options are 0 or positive for sequestration as would not indicate where loss of soil C may be occurring.

- Consider a 2 part metric?
  - All users receive the SCI score automatically
  - Ask users whether they have recently adopted a conservation practice; provide COMET Planner sequestration estimate for that practice as a supplemental metric.
- Moving to a more complex model (e.g. COMET Farm, DNDC): Will involve some of the same limitations (COMET) and/or extensive development (DNDC) and/or will require multiple years of data entry to establish a record of a practice change (both)
- Work with COMET team to enable reverse and additional practices in COMET-Planner (R&D required).
- Move to an emissions factor approach based on literature (similar to Cool Farm Tool) (R&D required)